/**@class android.media.MediaCodec
@extends java.lang.Object

 MediaCodec class can be used to access low-level media codecs, i.e. encoder/decoder components.
 It is part of the Android low-level multimedia support infrastructure (normally used together
 with {@link android.media.MediaExtractor}, {@link android.media.MediaSync}, {@link android.media.MediaMuxer}, {@link android.media.MediaCrypto},
 {@link android.media.MediaDrm}, {@link android.media.Image}, {@link Surface}, and {@link android.media.AudioTrack}.)
 <p>
 <center><object style="width: 540px; height: 205px;" type="image/svg+xml"
   data="../../../images/media/mediacodec_buffers.svg"><img
   src="../../../images/media/mediacodec_buffers.png" style="width: 540px; height: 205px"
   alt="MediaCodec buffer flow diagram"></object></center>
 <p>
 In broad terms, a codec processes input data to generate output data. It processes data
 asynchronously and uses a set of input and output buffers. At a simplistic level, you request
 (or receive) an empty input buffer, fill it up with data and send it to the codec for
 processing. The codec uses up the data and transforms it into one of its empty output buffers.
 Finally, you request (or receive) a filled output buffer, consume its contents and release it
 back to the codec.

 <h3>Data Types</h3>
 <p>
 Codecs operate on three kinds of data: compressed data, raw audio data and raw video data.
 All three kinds of data can be processed using {@link ByteBuffer ByteBuffers}, but you should use
 a {@link Surface} for raw video data to improve codec performance. Surface uses native video
 buffers without mapping or copying them to ByteBuffers; thus, it is much more efficient.
 You normally cannot access the raw video data when using a Surface, but you can use the
 {@link android.media.ImageReader} class to access unsecured decoded (raw) video frames. This may still be more
 efficient than using ByteBuffers, as some native buffers may be mapped into {@linkplain
 ByteBuffer#isDirect direct} ByteBuffers. When using ByteBuffer mode, you can access raw video
 frames using the {@link android.media.Image} class and {@link #getInputImage getInput}/{@link #getOutputImage
 OutputImage(int)}.

 <h4>Compressed Buffers</h4>
 <p>
 Input buffers (for decoders) and output buffers (for encoders) contain compressed data according
 to the {@linkplain android.media.MediaFormat#KEY_MIME format's type}. For video types this is normally a single
 compressed video frame. For audio data this is normally a single access unit (an encoded audio
 segment typically containing a few milliseconds of audio as dictated by the format type), but
 this requirement is slightly relaxed in that a buffer may contain multiple encoded access units
 of audio. In either case, buffers do not start or end on arbitrary byte boundaries, but rather on
 frame/access unit boundaries unless they are flagged with {@link #BUFFER_FLAG_PARTIAL_FRAME}.

 <h4>Raw Audio Buffers</h4>
 <p>
 Raw audio buffers contain entire frames of PCM audio data, which is one sample for each channel
 in channel order. Each PCM audio sample is either a 16 bit signed integer or a float,
 in native byte order.
 Raw audio buffers in the float PCM encoding are only possible
 if the MediaFormat's {@linkplain android.media.MediaFormat#KEY_PCM_ENCODING}
 is set to {@linkplain android.media.AudioFormat#ENCODING_PCM_FLOAT} during MediaCodec
 {@link #configure configure(&hellip;)}
 and confirmed by {@link #getOutputFormat} for decoders
 or {@link #getInputFormat} for encoders.
 A sample method to check for float PCM in the MediaFormat is as follows:

 <pre class=prettyprint>
 static boolean isPcmFloat(MediaFormat format) {
   return format.getInteger(MediaFormat.KEY_PCM_ENCODING, AudioFormat.ENCODING_PCM_16BIT)
       == AudioFormat.ENCODING_PCM_FLOAT;
 }</pre>

 In order to extract, in a short array,
 one channel of a buffer containing 16 bit signed integer audio data,
 the following code may be used:

 <pre class=prettyprint>
 // Assumes the buffer PCM encoding is 16 bit.
 short[] getSamplesForChannel(MediaCodec codec, int bufferId, int channelIx) {
   ByteBuffer outputBuffer = codec.getOutputBuffer(bufferId);
   MediaFormat format = codec.getOutputFormat(bufferId);
   ShortBuffer samples = outputBuffer.order(ByteOrder.nativeOrder()).asShortBuffer();
   int numChannels = format.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
   if (channelIx &lt; 0 || channelIx &gt;= numChannels) {
     return null;
   }
   short[] res = new short[samples.remaining() / numChannels];
   for (int i = 0; i &lt; res.length; ++i) {
     res[i] = samples.get(i * numChannels + channelIx);
   }
   return res;
 }</pre>

 <h4>Raw Video Buffers</h4>
 <p>
 In ByteBuffer mode video buffers are laid out according to their {@linkplain
 android.media.MediaFormat#KEY_COLOR_FORMAT color format}. You can get the supported color formats as an array
 from {@link #getCodecInfo}{@code .}{@link android.media.MediaCodecInfo#getCapabilitiesForType
 getCapabilitiesForType(&hellip;)}{@code .}{@link android.media.MediaCodecInfo.CodecCapabilities#colorFormats colorFormats}.
 Video codecs may support three kinds of color formats:
 <ul>
 <li><strong>native raw video format:</strong> This is marked by {@link android.media.MediaCodecInfo.CodecCapabilities#COLOR_FormatSurface} and it can be used with an input or output Surface.</li>
 <li><strong>flexible YUV buffers</strong> (such as {@link android.media.MediaCodecInfo.CodecCapabilities#COLOR_FormatYUV420Flexible}): These can be used with an input/output Surface,
 as well as in ByteBuffer mode, by using {@link #getInputImage getInput}/{@link #getOutputImage
 OutputImage(int)}.</li>
 <li><strong>other, specific formats:</strong> These are normally only supported in ByteBuffer
 mode. Some color formats are vendor specific. Others are defined in {@link android.media.MediaCodecInfo.CodecCapabilities}.
 For color formats that are equivalent to a flexible format, you can still use {@link #getInputImage getInput}/{@link #getOutputImage OutputImage(int)}.</li>
 </ul>
 <p>
 All video codecs support flexible YUV 4:2:0 buffers since {@link android.os.Build.VERSION_CODES#LOLLIPOP_MR1}.

 <h4>Accessing Raw Video ByteBuffers on Older Devices</h4>
 <p>
 Prior to {@link android.os.Build.VERSION_CODES#LOLLIPOP} and {@link android.media.Image} support, you need to
 use the {@link android.media.MediaFormat#KEY_STRIDE} and {@link android.media.MediaFormat#KEY_SLICE_HEIGHT} output format
 values to understand the layout of the raw output buffers.
 <p class=note>
 Note that on some devices the slice-height is advertised as 0. This could mean either that the
 slice-height is the same as the frame height, or that the slice-height is the frame height
 aligned to some value (usually a power of 2). Unfortunately, there is no standard and simple way
 to tell the actual slice height in this case. Furthermore, the vertical stride of the {@code U}
 plane in planar formats is also not specified or defined, though usually it is half of the slice
 height.
 <p>
 The {@link android.media.MediaFormat#KEY_WIDTH} and {@link android.media.MediaFormat#KEY_HEIGHT} keys specify the size of the
 video frames; however, for most encondings the video (picture) only occupies a portion of the
 video frame. This is represented by the 'crop rectangle'.
 <p>
 You need to use the following keys to get the crop rectangle of raw output images from the
 {@linkplain #getOutputFormat output format}. If these keys are not present, the video occupies the
 entire video frame.The crop rectangle is understood in the context of the output frame
 <em>before</em> applying any {@linkplain android.media.MediaFormat#KEY_ROTATION rotation}.
 <table style="width: 0%">
  <thead>
   <tr>
    <th>Format Key</th>
    <th>Type</th>
    <th>Description</th>
   </tr>
  </thead>
  <tbody>
   <tr>
    <td>{@code "crop-left"}</td>
    <td>Integer</td>
    <td>The left-coordinate (x) of the crop rectangle</td>
   </tr><tr>
    <td>{@code "crop-top"}</td>
    <td>Integer</td>
    <td>The top-coordinate (y) of the crop rectangle</td>
   </tr><tr>
    <td>{@code "crop-right"}</td>
    <td>Integer</td>
    <td>The right-coordinate (x) <strong>MINUS 1</strong> of the crop rectangle</td>
   </tr><tr>
    <td>{@code "crop-bottom"}</td>
    <td>Integer</td>
    <td>The bottom-coordinate (y) <strong>MINUS 1</strong> of the crop rectangle</td>
   </tr><tr>
    <td colspan=3>
     The right and bottom coordinates can be understood as the coordinates of the right-most
     valid column/bottom-most valid row of the cropped output image.
    </td>
   </tr>
  </tbody>
 </table>
 <p>
 The size of the video frame (before rotation) can be calculated as such:
 <pre class=prettyprint>
 MediaFormat format = decoder.getOutputFormat(&hellip;);
 int width = format.getInteger(MediaFormat.KEY_WIDTH);
 if (format.containsKey("crop-left") && format.containsKey("crop-right")) {
     width = format.getInteger("crop-right") + 1 - format.getInteger("crop-left");
 }
 int height = format.getInteger(MediaFormat.KEY_HEIGHT);
 if (format.containsKey("crop-top") && format.containsKey("crop-bottom")) {
     height = format.getInteger("crop-bottom") + 1 - format.getInteger("crop-top");
 }
 </pre>
 <p class=note>
 Also note that the meaning of {@link android.media.MediaCodec.BufferInfo#offset android.media.MediaCodec.BufferInfo.offset} was not consistent across
 devices. On some devices the offset pointed to the top-left pixel of the crop rectangle, while on
 most devices it pointed to the top-left pixel of the entire frame.

 <h3>States</h3>
 <p>
 During its life a codec conceptually exists in one of three states: Stopped, Executing or
 Released. The Stopped collective state is actually the conglomeration of three states:
 Uninitialized, Configured and Error, whereas the Executing state conceptually progresses through
 three sub-states: Flushed, Running and End-of-Stream.
 <p>
 <center><object style="width: 516px; height: 353px;" type="image/svg+xml"
   data="../../../images/media/mediacodec_states.svg"><img
   src="../../../images/media/mediacodec_states.png" style="width: 519px; height: 356px"
   alt="MediaCodec state diagram"></object></center>
 <p>
 When you create a codec using one of the factory methods, the codec is in the Uninitialized
 state. First, you need to configure it via {@link #configure configure(&hellip;)}, which brings
 it to the Configured state, then call {@link #start} to move it to the Executing state. In this
 state you can process data through the buffer queue manipulation described above.
 <p>
 The Executing state has three sub-states: Flushed, Running and End-of-Stream. Immediately after
 {@link #start} the codec is in the Flushed sub-state, where it holds all the buffers. As soon
 as the first input buffer is dequeued, the codec moves to the Running sub-state, where it spends
 most of its life. When you queue an input buffer with the {@linkplain #BUFFER_FLAG_END_OF_STREAM
 end-of-stream marker}, the codec transitions to the End-of-Stream sub-state. In this state the
 codec no longer accepts further input buffers, but still generates output buffers until the
 end-of-stream is reached on the output. You can move back to the Flushed sub-state at any time
 while in the Executing state using {@link #flush}.
 <p>
 Call {@link #stop} to return the codec to the Uninitialized state, whereupon it may be configured
 again. When you are done using a codec, you must release it by calling {@link #release}.
 <p>
 On rare occasions the codec may encounter an error and move to the Error state. This is
 communicated using an invalid return value from a queuing operation, or sometimes via an
 exception. Call {@link #reset} to make the codec usable again. You can call it from any state to
 move the codec back to the Uninitialized state. Otherwise, call {@link #release} to move to the
 terminal Released state.

 <h3>Creation</h3>
 <p>
 Use {@link android.media.MediaCodecList} to create a MediaCodec for a specific {@link android.media.MediaFormat}. When
 decoding a file or a stream, you can get the desired format from {@link android.media.MediaExtractor#getTrackFormat android.media.MediaExtractor.getTrackFormat}. Inject any specific features that
 you want to add using {@link android.media.MediaFormat#setFeatureEnabled android.media.MediaFormat.setFeatureEnabled}, then
 call {@link android.media.MediaCodecList#findDecoderForFormat android.media.MediaCodecList.findDecoderForFormat} to get the
 name of a codec that can handle that specific media format. Finally, create the codec using
 {@link #createByCodecName}.
 <p class=note>
 <strong>Note:</strong> On {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the format to
 {@code MediaCodecList.findDecoder}/{@code EncoderForFormat} must not contain a {@linkplain
 android.media.MediaFormat#KEY_FRAME_RATE frame rate}. Use
 <code class=prettyprint>format.setString(MediaFormat.KEY_FRAME_RATE, null)</code>
 to clear any existing frame rate setting in the format.
 <p>
 You can also create the preferred codec for a specific MIME type using {@link #createDecoderByType createDecoder}/{@link #createEncoderByType EncoderByType(String)}.
 This, however, cannot be used to inject features, and may create a codec that cannot handle the
 specific desired media format.

 <h4>Creating secure decoders</h4>
 <p>
 On versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and earlier, secure codecs might
 not be listed in {@link android.media.MediaCodecList}, but may still be available on the system. Secure codecs
 that exist can be instantiated by name only, by appending {@code ".secure"} to the name of a
 regular codec (the name of all secure codecs must end in {@code ".secure"}.) {@link #createByCodecName} will throw an {@code IOException} if the codec is not present on the system.
 <p>
 From {@link android.os.Build.VERSION_CODES#LOLLIPOP} onwards, you should use the {@link android.media.MediaCodecInfo.CodecCapabilities#FEATURE_SecurePlayback} feature in the media format to create a secure decoder.

 <h3>Initialization</h3>
 <p>
 After creating the codec, you can set a callback using {@link #setCallback setCallback} if you
 want to process data asynchronously. Then, {@linkplain #configure configure} the codec using the
 specific media format. This is when you can specify the output {@link Surface} for video
 producers &ndash; codecs that generate raw video data (e.g. video decoders). This is also when
 you can set the decryption parameters for secure codecs (see {@link android.media.MediaCrypto}). Finally, since
 some codecs can operate in multiple modes, you must specify whether you want it to work as a
 decoder or an encoder.
 <p>
 Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you can query the resulting input and
 output format in the Configured state. You can use this to verify the resulting configuration,
 e.g. color formats, before starting the codec.
 <p>
 If you want to process raw input video buffers natively with a video consumer &ndash; a codec
 that processes raw video input, such as a video encoder &ndash; create a destination Surface for
 your input data using {@link #createInputSurface} after configuration. Alternately, set up the
 codec to use a previously created {@linkplain #createPersistentInputSurface persistent input
 surface} by calling {@link #setInputSurface}.

 <h4 id=CSD><a name="CSD"></a>Codec-specific Data</h4>
 <p>
 Some formats, notably AAC audio and MPEG4, H.264 and H.265 video formats require the actual data
 to be prefixed by a number of buffers containing setup data, or codec specific data. When
 processing such compressed formats, this data must be submitted to the codec after {@link #start} and before any frame data. Such data must be marked using the flag {@link #BUFFER_FLAG_CODEC_CONFIG} in a call to {@link #queueInputBuffer queueInputBuffer}.
 <p>
 Codec-specific data can also be included in the format passed to {@link #configure configure} in
 ByteBuffer entries with keys "csd-0", "csd-1", etc. These keys are always included in the track
 {@link android.media.MediaFormat} obtained from the {@link android.media.MediaExtractor#getTrackFormat android.media.MediaExtractor}.
 Codec-specific data in the format is automatically submitted to the codec upon {@link #start};
 you <strong>MUST NOT</strong> submit this data explicitly. If the format did not contain codec
 specific data, you can choose to submit it using the specified number of buffers in the correct
 order, according to the format requirements. In case of H.264 AVC, you can also concatenate all
 codec-specific data and submit it as a single codec-config buffer.
 <p>
 Android uses the following codec-specific data buffers. These are also required to be set in
 the track format for proper {@link android.media.MediaMuxer} track configuration. Each parameter set and the
 codec-specific-data sections marked with (<sup>*</sup>) must start with a start code of
 {@code "\x00\x00\x00\x01"}.
 <p>
 <style>td.NA { background: #ccc; } .mid > tr > td { vertical-align: middle; }</style>
 <table>
  <thead>
   <th>Format</th>
   <th>CSD buffer #0</th>
   <th>CSD buffer #1</th>
   <th>CSD buffer #2</th>
  </thead>
  <tbody class=mid>
   <tr>
    <td>AAC</td>
    <td>Decoder-specific information from ESDS<sup>*</sup></td>
    <td class=NA>Not Used</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>VORBIS</td>
    <td>Identification header</td>
    <td>Setup header</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>OPUS</td>
    <td>Identification header</td>
    <td>Pre-skip in nanosecs<br>
        (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)<br>
        This overrides the pre-skip value in the identification header.</td>
    <td>Seek Pre-roll in nanosecs<br>
        (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)</td>
   </tr>
   <tr>
    <td>FLAC</td>
    <td>mandatory metadata block (called the STREAMINFO block),<br>
        optionally followed by any number of other metadata blocks</td>
    <td class=NA>Not Used</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>MPEG-4</td>
    <td>Decoder-specific information from ESDS<sup>*</sup></td>
    <td class=NA>Not Used</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>H.264 AVC</td>
    <td>SPS (Sequence Parameter Sets<sup>*</sup>)</td>
    <td>PPS (Picture Parameter Sets<sup>*</sup>)</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>H.265 HEVC</td>
    <td>VPS (Video Parameter Sets<sup>*</sup>) +<br>
     SPS (Sequence Parameter Sets<sup>*</sup>) +<br>
     PPS (Picture Parameter Sets<sup>*</sup>)</td>
    <td class=NA>Not Used</td>
    <td class=NA>Not Used</td>
   </tr>
   <tr>
    <td>VP9</td>
    <td>VP9 <a href="http://wiki.webmproject.org/vp9-codecprivate">CodecPrivate</a> Data
        (optional)</td>
    <td class=NA>Not Used</td>
    <td class=NA>Not Used</td>
   </tr>
  </tbody>
 </table>

 <p class=note>
 <strong>Note:</strong> care must be taken if the codec is flushed immediately or shortly
 after start, before any output buffer or output format change has been returned, as the codec
 specific data may be lost during the flush. You must resubmit the data using buffers marked with
 {@link #BUFFER_FLAG_CODEC_CONFIG} after such flush to ensure proper codec operation.
 <p>
 Encoders (or codecs that generate compressed data) will create and return the codec specific data
 before any valid output buffer in output buffers marked with the {@linkplain
 #BUFFER_FLAG_CODEC_CONFIG codec-config flag}. Buffers containing codec-specific-data have no
 meaningful timestamps.

 <h3>Data Processing</h3>
 <p>
 Each codec maintains a set of input and output buffers that are referred to by a buffer-ID in
 API calls. After a successful call to {@link #start} the client "owns" neither input nor output
 buffers. In synchronous mode, call {@link #dequeueInputBuffer dequeueInput}/{@link #dequeueOutputBuffer OutputBuffer(&hellip;)} to obtain (get ownership of) an input or output
 buffer from the codec. In asynchronous mode, you will automatically receive available buffers via
 the {@link Callback#onInputBufferAvailable android.media.MediaCodec.Callback.onInput}/{@link android.media.MediaCodec.Callback#onOutputBufferAvailable OutputBufferAvailable(&hellip;)} callbacks.
 <p>
 Upon obtaining an input buffer, fill it with data and submit it to the codec using {@link #queueInputBuffer queueInputBuffer} &ndash; or {@link #queueSecureInputBuffer
 queueSecureInputBuffer} if using decryption. Do not submit multiple input buffers with the same
 timestamp (unless it is <a href="#CSD">codec-specific data</a> marked as such).
 <p>
 The codec in turn will return a read-only output buffer via the {@link android.media.MediaCodec.Callback#onOutputBufferAvailable onOutputBufferAvailable} callback in asynchronous mode, or in
 response to a {@link #dequeueOutputBuffer dequeueOutputBuffer} call in synchronous mode. After the
 output buffer has been processed, call one of the {@link #releaseOutputBuffer
 releaseOutputBuffer} methods to return the buffer to the codec.
 <p>
 While you are not required to resubmit/release buffers immediately to the codec, holding onto
 input and/or output buffers may stall the codec, and this behavior is device dependent.
 <strong>Specifically, it is possible that a codec may hold off on generating output buffers until
 <em>all</em> outstanding buffers have been released/resubmitted.</strong> Therefore, try to
 hold onto to available buffers as little as possible.
 <p>
 Depending on the API version, you can process data in three ways:
 <table>
  <thead>
   <tr>
    <th>Processing Mode</th>
    <th>API version <= 20<br>Jelly Bean/KitKat</th>
    <th>API version >= 21<br>Lollipop and later</th>
   </tr>
  </thead>
  <tbody>
   <tr>
    <td>Synchronous API using buffer arrays</td>
    <td>Supported</td>
    <td>Deprecated</td>
   </tr>
   <tr>
    <td>Synchronous API using buffers</td>
    <td class=NA>Not Available</td>
    <td>Supported</td>
   </tr>
   <tr>
    <td>Asynchronous API using buffers</td>
    <td class=NA>Not Available</td>
    <td>Supported</td>
   </tr>
  </tbody>
 </table>

 <h4>Asynchronous Processing using Buffers</h4>
 <p>
 Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the preferred method is to process data
 asynchronously by setting a callback before calling {@link #configure configure}. Asynchronous
 mode changes the state transitions slightly, because you must call {@link #start} after {@link #flush} to transition the codec to the Running sub-state and start receiving input buffers.
 Similarly, upon an initial call to {@code start} the codec will move directly to the Running
 sub-state and start passing available input buffers via the callback.
 <p>
 <center><object style="width: 516px; height: 353px;" type="image/svg+xml"
   data="../../../images/media/mediacodec_async_states.svg"><img
   src="../../../images/media/mediacodec_async_states.png" style="width: 516px; height: 353px"
   alt="MediaCodec state diagram for asynchronous operation"></object></center>
 <p>
 MediaCodec is typically used like this in asynchronous mode:
 <pre class=prettyprint>
 MediaCodec codec = MediaCodec.createByCodecName(name);
 MediaFormat mOutputFormat; // member variable
 codec.setCallback(new MediaCodec.Callback() {
   {@literal @Override}
   void onInputBufferAvailable(MediaCodec mc, int inputBufferId) {
     ByteBuffer inputBuffer = codec.getInputBuffer(inputBufferId);
     // fill inputBuffer with valid data
     &hellip;
     codec.queueInputBuffer(inputBufferId, &hellip;);
   }

   {@literal @Override}
   void onOutputBufferAvailable(MediaCodec mc, int outputBufferId, &hellip;) {
     ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
     MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
     // bufferFormat is equivalent to mOutputFormat
     // outputBuffer is ready to be processed or rendered.
     &hellip;
     codec.releaseOutputBuffer(outputBufferId, &hellip;);
   }

   {@literal @Override}
   void onOutputFormatChanged(MediaCodec mc, MediaFormat format) {
     // Subsequent data will conform to new format.
     // Can ignore if using getOutputFormat(outputBufferId)
     mOutputFormat = format; // option B
   }

   {@literal @Override}
   void onError(&hellip;) {
     &hellip;
   }
 });
 codec.configure(format, &hellip;);
 mOutputFormat = codec.getOutputFormat(); // option B
 codec.start();
 // wait for processing to complete
 codec.stop();
 codec.release();</pre>

 <h4>Synchronous Processing using Buffers</h4>
 <p>
 Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you should retrieve input and output
 buffers using {@link #getInputBuffer getInput}/{@link #getOutputBuffer OutputBuffer(int)} and/or
 {@link #getInputImage getInput}/{@link #getOutputImage OutputImage(int)} even when using the
 codec in synchronous mode. This allows certain optimizations by the framework, e.g. when
 processing dynamic content. This optimization is disabled if you call {@link #getInputBuffers
 getInput}/{@link #getOutputBuffers OutputBuffers()}.

 <p class=note>
 <strong>Note:</strong> do not mix the methods of using buffers and buffer arrays at the same
 time. Specifically, only call {@code getInput}/{@code OutputBuffers} directly after {@link #start} or after having dequeued an output buffer ID with the value of {@link #INFO_OUTPUT_FORMAT_CHANGED}.
 <p>
 MediaCodec is typically used like this in synchronous mode:
 <pre>
 MediaCodec codec = MediaCodec.createByCodecName(name);
 codec.configure(format, &hellip;);
 MediaFormat outputFormat = codec.getOutputFormat(); // option B
 codec.start();
 for (;;) {
   int inputBufferId = codec.dequeueInputBuffer(timeoutUs);
   if (inputBufferId &gt;= 0) {
     ByteBuffer inputBuffer = codec.getInputBuffer(&hellip;);
     // fill inputBuffer with valid data
     &hellip;
     codec.queueInputBuffer(inputBufferId, &hellip;);
   }
   int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
   if (outputBufferId &gt;= 0) {
     ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
     MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
     // bufferFormat is identical to outputFormat
     // outputBuffer is ready to be processed or rendered.
     &hellip;
     codec.releaseOutputBuffer(outputBufferId, &hellip;);
   } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
     // Subsequent data will conform to new format.
     // Can ignore if using getOutputFormat(outputBufferId)
     outputFormat = codec.getOutputFormat(); // option B
   }
 }
 codec.stop();
 codec.release();</pre>

 <h4>Synchronous Processing using Buffer Arrays (deprecated)</h4>
 <p>
 In versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and before, the set of input and
 output buffers are represented by the {@code ByteBuffer[]} arrays. After a successful call to
 {@link #start}, retrieve the buffer arrays using {@link #getInputBuffers getInput}/{@link #getOutputBuffers OutputBuffers()}. Use the buffer ID-s as indices into these arrays (when
 non-negative), as demonstrated in the sample below. Note that there is no inherent correlation
 between the size of the arrays and the number of input and output buffers used by the system,
 although the array size provides an upper bound.
 <pre>
 MediaCodec codec = MediaCodec.createByCodecName(name);
 codec.configure(format, &hellip;);
 codec.start();
 ByteBuffer[] inputBuffers = codec.getInputBuffers();
 ByteBuffer[] outputBuffers = codec.getOutputBuffers();
 for (;;) {
   int inputBufferId = codec.dequeueInputBuffer(&hellip;);
   if (inputBufferId &gt;= 0) {
     // fill inputBuffers[inputBufferId] with valid data
     &hellip;
     codec.queueInputBuffer(inputBufferId, &hellip;);
   }
   int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
   if (outputBufferId &gt;= 0) {
     // outputBuffers[outputBufferId] is ready to be processed or rendered.
     &hellip;
     codec.releaseOutputBuffer(outputBufferId, &hellip;);
   } else if (outputBufferId == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
     outputBuffers = codec.getOutputBuffers();
   } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
     // Subsequent data will conform to new format.
     MediaFormat format = codec.getOutputFormat();
   }
 }
 codec.stop();
 codec.release();</pre>

 <h4>End-of-stream Handling</h4>
 <p>
 When you reach the end of the input data, you must signal it to the codec by specifying the
 {@link #BUFFER_FLAG_END_OF_STREAM} flag in the call to {@link #queueInputBuffer
 queueInputBuffer}. You can do this on the last valid input buffer, or by submitting an additional
 empty input buffer with the end-of-stream flag set. If using an empty buffer, the timestamp will
 be ignored.
 <p>
 The codec will continue to return output buffers until it eventually signals the end of the
 output stream by specifying the same end-of-stream flag in the {@link android.media.MediaCodec.BufferInfo} set in {@link #dequeueOutputBuffer dequeueOutputBuffer} or returned via {@link android.media.MediaCodec.Callback#onOutputBufferAvailable
 onOutputBufferAvailable}. This can be set on the last valid output buffer, or on an empty buffer
 after the last valid output buffer. The timestamp of such empty buffer should be ignored.
 <p>
 Do not submit additional input buffers after signaling the end of the input stream, unless the
 codec has been flushed, or stopped and restarted.

 <h4>Using an Output Surface</h4>
 <p>
 The data processing is nearly identical to the ByteBuffer mode when using an output {@link Surface}; however, the output buffers will not be accessible, and are represented as {@code null}
 values. E.g. {@link #getOutputBuffer getOutputBuffer}/{@link #getOutputandroid.media.Image android.media.Image(int)} will
 return {@code null} and {@link #getOutputBuffers} will return an array containing only {@code
 null}-s.
 <p>
 When using an output Surface, you can select whether or not to render each output buffer on the
 surface. You have three choices:
 <ul>
 <li><strong>Do not render the buffer:</strong> Call {@link #releaseOutputBuffer(int, boolean)
 releaseOutputBuffer(bufferId, false)}.</li>
 <li><strong>Render the buffer with the default timestamp:</strong> Call {@link #releaseOutputBuffer(int, boolean) releaseOutputBuffer(bufferId, true)}.</li>
 <li><strong>Render the buffer with a specific timestamp:</strong> Call {@link #releaseOutputBuffer(int, long) releaseOutputBuffer(bufferId, timestamp)}.</li>
 </ul>
 <p>
 Since {@link android.os.Build.VERSION_CODES#M}, the default timestamp is the {@linkplain
 android.media.MediaCodec.BufferInfo#presentationTimeUs presentation timestamp} of the buffer (converted to nanoseconds).
 It was not defined prior to that.
 <p>
 Also since {@link android.os.Build.VERSION_CODES#M}, you can change the output Surface
 dynamically using {@link #setOutputSurface setOutputSurface}.
 <p>
 When rendering output to a Surface, the Surface may be configured to drop excessive frames (that
 are not consumed by the Surface in a timely manner). Or it may be configured to not drop excessive
 frames. In the latter mode if the Surface is not consuming output frames fast enough, it will
 eventually block the decoder. Prior to {@link android.os.Build.VERSION_CODES#Q} the exact behavior
 was undefined, with the exception that View surfaces (SuerfaceView or TextureView) always dropped
 excessive frames. Since {@link android.os.Build.VERSION_CODES#Q} the default behavior is to drop
 excessive frames. Applications can opt out of this behavior for non-View surfaces (such as
 ImageReader or SurfaceTexture) by targeting SDK {@link android.os.Build.VERSION_CODES#Q} and
 setting the key {@code "allow-frame-drop"} to {@code 0} in their configure format.

 <h4>Transformations When Rendering onto Surface</h4>

 If the codec is configured into Surface mode, any crop rectangle, {@linkplain
 android.media.MediaFormat#KEY_ROTATION rotation} and {@linkplain #setVideoScalingMode video scaling
 mode} will be automatically applied with one exception:
 <p class=note>
 Prior to the {@link android.os.Build.VERSION_CODES#M} release, software decoders may not
 have applied the rotation when being rendered onto a Surface. Unfortunately, there is no standard
 and simple way to identify software decoders, or if they apply the rotation other than by trying
 it out.
 <p>
 There are also some caveats.
 <p class=note>
 Note that the pixel aspect ratio is not considered when displaying the output onto the
 Surface. This means that if you are using {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT} mode, you
 must position the output Surface so that it has the proper final display aspect ratio. Conversely,
 you can only use {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode for content with
 square pixels (pixel aspect ratio or 1:1).
 <p class=note>
 Note also that as of {@link android.os.Build.VERSION_CODES#N} release, {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode may not work correctly for videos rotated
 by 90 or 270 degrees.
 <p class=note>
 When setting the video scaling mode, note that it must be reset after each time the output
 buffers change. Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, you can
 do this after each time the output format changes.

 <h4>Using an Input Surface</h4>
 <p>
 When using an input Surface, there are no accessible input buffers, as buffers are automatically
 passed from the input surface to the codec. Calling {@link #dequeueInputBuffer
 dequeueInputBuffer} will throw an {@code IllegalStateException}, and {@link #getInputBuffers}
 returns a bogus {@code ByteBuffer[]} array that <strong>MUST NOT</strong> be written into.
 <p>
 Call {@link #signalEndOfInputStream} to signal end-of-stream. The input surface will stop
 submitting data to the codec immediately after this call.
 <p>

 <h3>Seeking &amp; Adaptive Playback Support</h3>
 <p>
 Video decoders (and in general codecs that consume compressed video data) behave differently
 regarding seek and format change whether or not they support and are configured for adaptive
 playback. You can check if a decoder supports {@linkplain
 android.media.MediaCodecInfo.CodecCapabilities#FEATURE_AdaptivePlayback adaptive playback} via {@link android.media.MediaCodecInfo.CodecCapabilities#isFeatureSupported android.media.MediaCodecInfo.CodecCapabilities.isFeatureSupported(String)}. Adaptive
 playback support for video decoders is only activated if you configure the codec to decode onto a
 {@link Surface}.

 <h4 id=KeyFrames><a name="KeyFrames"></a>Stream Boundary and Key Frames</h4>
 <p>
 It is important that the input data after {@link #start} or {@link #flush} starts at a suitable
 stream boundary: the first frame must a key frame. A <em>key frame</em> can be decoded
 completely on its own (for most codecs this means an I-frame), and no frames that are to be
 displayed after a key frame refer to frames before the key frame.
 <p>
 The following table summarizes suitable key frames for various video formats.
 <table>
  <thead>
   <tr>
    <th>Format</th>
    <th>Suitable key frame</th>
   </tr>
  </thead>
  <tbody class=mid>
   <tr>
    <td>VP9/VP8</td>
    <td>a suitable intraframe where no subsequent frames refer to frames prior to this frame.<br>
      <i>(There is no specific name for such key frame.)</i></td>
   </tr>
   <tr>
    <td>H.265 HEVC</td>
    <td>IDR or CRA</td>
   </tr>
   <tr>
    <td>H.264 AVC</td>
    <td>IDR</td>
   </tr>
   <tr>
    <td>MPEG-4<br>H.263<br>MPEG-2</td>
    <td>a suitable I-frame where no subsequent frames refer to frames prior to this frame.<br>
      <i>(There is no specific name for such key frame.)</td>
   </tr>
  </tbody>
 </table>

 <h4>For decoders that do not support adaptive playback (including when not decoding onto a
 Surface)</h4>
 <p>
 In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
 seek) you <strong>MUST</strong> flush the decoder. Since all output buffers are immediately
 revoked at the point of the flush, you may want to first signal then wait for the end-of-stream
 before you call {@code flush}. It is important that the input data after a flush starts at a
 suitable stream boundary/key frame.
 <p class=note>
 <strong>Note:</strong> the format of the data submitted after a flush must not change; {@link #flush} does not support format discontinuities; for that, a full {@link #stop} - {@link #configure configure(&hellip;)} - {@link #start} cycle is necessary.

 <p class=note>
 <strong>Also note:</strong> if you flush the codec too soon after {@link #start} &ndash;
 generally, before the first output buffer or output format change is received &ndash; you
 will need to resubmit the codec-specific-data to the codec. See the <a
 href="#CSD">codec-specific-data section</a> for more info.

 <h4>For decoders that support and are configured for adaptive playback</h4>
 <p>
 In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
 seek) it is <em>not necessary</em> to flush the decoder; however, input data after the
 discontinuity must start at a suitable stream boundary/key frame.
 <p>
 For some video formats - namely H.264, H.265, VP8 and VP9 - it is also possible to change the
 picture size or configuration mid-stream. To do this you must package the entire new
 codec-specific configuration data together with the key frame into a single buffer (including
 any start codes), and submit it as a <strong>regular</strong> input buffer.
 <p>
 You will receive an {@link #INFO_OUTPUT_FORMAT_CHANGED} return value from {@link #dequeueOutputBuffer dequeueOutputBuffer} or a {@link android.media.MediaCodec.Callback#onOutputBufferAvailable
 onOutputFormatChanged} callback just after the picture-size change takes place and before any
 frames with the new size have been returned.
 <p class=note>
 <strong>Note:</strong> just as the case for codec-specific data, be careful when calling
 {@link #flush} shortly after you have changed the picture size. If you have not received
 confirmation of the picture size change, you will need to repeat the request for the new picture
 size.

 <h3>Error handling</h3>
 <p>
 The factory methods {@link #createByCodecName createByCodecName} and {@link #createDecoderByType
 createDecoder}/{@link #createEncoderByType EncoderByType} throw {@code IOException} on failure
 which you must catch or declare to pass up. MediaCodec methods throw {@code
 IllegalStateException} when the method is called from a codec state that does not allow it; this
 is typically due to incorrect application API usage. Methods involving secure buffers may throw
 {@link android.media.MediaCodec.CryptoException}, which has further error information obtainable from {@link android.media.MediaCodec.CryptoException#getErrorCode}.
 <p>
 Internal codec errors result in a {@link android.media.MediaCodec.CodecException}, which may be due to media content
 corruption, hardware failure, resource exhaustion, and so forth, even when the application is
 correctly using the API. The recommended action when receiving a {@code CodecException}
 can be determined by calling {@link android.media.MediaCodec.CodecException#isRecoverable} and {@link android.media.MediaCodec.CodecException#isTransient}:
 <ul>
 <li><strong>recoverable errors:</strong> If {@code isRecoverable()} returns true, then call
 {@link #stop}, {@link #configure configure(&hellip;)}, and {@link #start} to recover.</li>
 <li><strong>transient errors:</strong> If {@code isTransient()} returns true, then resources are
 temporarily unavailable and the method may be retried at a later time.</li>
 <li><strong>fatal errors:</strong> If both {@code isRecoverable()} and {@code isTransient()}
 return false, then the {@code CodecException} is fatal and the codec must be {@linkplain #reset
 reset} or {@linkplain #release released}.</li>
 </ul>
 <p>
 Both {@code isRecoverable()} and {@code isTransient()} do not return true at the same time.

 <h2 id=History><a name="History"></a>Valid API Calls and API History</h2>
 <p>
 This sections summarizes the valid API calls in each state and the API history of the MediaCodec
 class. For API version numbers, see {@link android.os.Build.VERSION_CODES}.

 <style>
 .api > tr > th, .api > tr > td { text-align: center; padding: 4px 4px; }
 .api > tr > th     { vertical-align: bottom; }
 .api > tr > td     { vertical-align: middle; }
 .sml > tr > th, .sml > tr > td { text-align: center; padding: 2px 4px; }
 .fn { text-align: left; }
 .fn > code > a { font: 14px/19px Roboto Condensed, sans-serif; }
 .deg45 {
   white-space: nowrap; background: none; border: none; vertical-align: bottom;
   width: 30px; height: 83px;
 }
 .deg45 > div {
   transform: skew(-45deg, 0deg) translate(1px, -67px);
   transform-origin: bottom left 0;
   width: 30px; height: 20px;
 }
 .deg45 > div > div { border: 1px solid #ddd; background: #999; height: 90px; width: 42px; }
 .deg45 > div > div > div { transform: skew(45deg, 0deg) translate(-55px, 55px) rotate(-45deg); }
 </style>

 <table align="right" style="width: 0%">
  <thead>
   <tr><th>Symbol</th><th>Meaning</th></tr>
  </thead>
  <tbody class=sml>
   <tr><td>&#9679;</td><td>Supported</td></tr>
   <tr><td>&#8277;</td><td>Semantics changed</td></tr>
   <tr><td>&#9675;</td><td>Experimental support</td></tr>
   <tr><td>[ ]</td><td>Deprecated</td></tr>
   <tr><td>&#9099;</td><td>Restricted to surface input mode</td></tr>
   <tr><td>&#9094;</td><td>Restricted to surface output mode</td></tr>
   <tr><td>&#9639;</td><td>Restricted to ByteBuffer input mode</td></tr>
   <tr><td>&#8617;</td><td>Restricted to synchronous mode</td></tr>
   <tr><td>&#8644;</td><td>Restricted to asynchronous mode</td></tr>
   <tr><td>( )</td><td>Can be called, but shouldn't</td></tr>
  </tbody>
 </table>

 <table style="width: 100%;">
  <thead class=api>
   <tr>
    <th class=deg45><div><div style="background:#4285f4"><div>Uninitialized</div></div></div></th>
    <th class=deg45><div><div style="background:#f4b400"><div>Configured</div></div></div></th>
    <th class=deg45><div><div style="background:#e67c73"><div>Flushed</div></div></div></th>
    <th class=deg45><div><div style="background:#0f9d58"><div>Running</div></div></div></th>
    <th class=deg45><div><div style="background:#f7cb4d"><div>End of Stream</div></div></div></th>
    <th class=deg45><div><div style="background:#db4437"><div>Error</div></div></div></th>
    <th class=deg45><div><div style="background:#666"><div>Released</div></div></div></th>
    <th></th>
    <th colspan="8">SDK Version</th>
   </tr>
   <tr>
    <th colspan="7">State</th>
    <th>Method</th>
    <th>16</th>
    <th>17</th>
    <th>18</th>
    <th>19</th>
    <th>20</th>
    <th>21</th>
    <th>22</th>
    <th>23</th>
   </tr>
  </thead>
  <tbody class=api>
   <tr>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td class=fn>{@link #createByCodecName createByCodecName}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td class=fn>{@link #createDecoderByType createDecoderByType}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td class=fn>{@link #createEncoderByType createEncoderByType}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td class=fn>{@link #createPersistentInputSurface createPersistentInputSurface}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #configure configure}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>18+</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #createInputSurface createInputSurface}</td>
    <td></td>
    <td></td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>(16+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #dequeueInputBuffer dequeueInputBuffer}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9639;</td>
    <td>&#9639;</td>
    <td>&#9639;</td>
    <td>&#8277;&#9639;&#8617;</td>
    <td>&#9639;&#8617;</td>
    <td>&#9639;&#8617;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #dequeueOutputBuffer dequeueOutputBuffer}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;&#8617;</td>
    <td>&#8617;</td>
    <td>&#8617;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #flush flush}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>-</td>
    <td class=fn>{@link #getCodecInfo getCodecInfo}</td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>(21+)</td>
    <td>21+</td>
    <td>(21+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getInputBuffer getInputBuffer}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>(16+)</td>
    <td>(16+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getInputBuffers getInputBuffers}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>[&#8277;&#8617;]</td>
    <td>[&#8617;]</td>
    <td>[&#8617;]</td>
   </tr>
   <tr>
    <td>-</td>
    <td>21+</td>
    <td>(21+)</td>
    <td>(21+)</td>
    <td>(21+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getInputFormat getInputFormat}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>(21+)</td>
    <td>21+</td>
    <td>(21+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getInputImage getInputImage}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9675;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>18+</td>
    <td>-</td>
    <td class=fn>{@link #getName getName}</td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>(21+)</td>
    <td>21+</td>
    <td>21+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getOutputBuffer getOutputBuffer}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getOutputBuffers getOutputBuffers}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>[&#8277;&#8617;]</td>
    <td>[&#8617;]</td>
    <td>[&#8617;]</td>
   </tr>
   <tr>
    <td>-</td>
    <td>21+</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getOutputFormat}()</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>(21+)</td>
    <td>21+</td>
    <td>21+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getOutputFormat}(int)</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>(21+)</td>
    <td>21+</td>
    <td>21+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #getOutputImage getOutputImage}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9675;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>(16+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #queueInputBuffer queueInputBuffer}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>(16+)</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #queueSecureInputBuffer queueSecureInputBuffer}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td class=fn>{@link #release release}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #releaseOutputBuffer(int, boolean)}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>21+</td>
    <td>21+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #releaseOutputBuffer(int, long)}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
   </tr>
   <tr>
    <td>21+</td>
    <td>21+</td>
    <td>21+</td>
    <td>21+</td>
    <td>21+</td>
    <td>21+</td>
    <td>-</td>
    <td class=fn>{@link #reset reset}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>21+</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #setCallback(Callback) setCallback}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>{@link #setCallback(Callback, Handler) &#8277;}</td>
   </tr>
   <tr>
    <td>-</td>
    <td>23+</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #setInputSurface setInputSurface}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9099;</td>
   </tr>
   <tr>
    <td>23+</td>
    <td>23+</td>
    <td>23+</td>
    <td>23+</td>
    <td>23+</td>
    <td>(23+)</td>
    <td>(23+)</td>
    <td class=fn>{@link #setOnFrameRenderedListener setOnFrameRenderedListener}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9675; &#9094;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>23+</td>
    <td>23+</td>
    <td>23+</td>
    <td>23+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #setOutputSurface setOutputSurface}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9094;</td>
   </tr>
   <tr>
    <td>19+</td>
    <td>19+</td>
    <td>19+</td>
    <td>19+</td>
    <td>19+</td>
    <td>(19+)</td>
    <td>-</td>
    <td class=fn>{@link #setParameters setParameters}</td>
    <td></td>
    <td></td>
    <td></td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>(16+)</td>
    <td>(16+)</td>
    <td>16+</td>
    <td>(16+)</td>
    <td>(16+)</td>
    <td>-</td>
    <td class=fn>{@link #setVideoScalingMode setVideoScalingMode}</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
    <td>&#9094;</td>
   </tr>
   <tr>
    <td>(29+)</td>
    <td>29+</td>
    <td>29+</td>
    <td>29+</td>
    <td>(29+)</td>
    <td>(29+)</td>
    <td>-</td>
    <td class=fn>{@link #setAudioPresentation setAudioPresentation}</td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
    <td></td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>18+</td>
    <td>18+</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #signalEndOfInputStream signalEndOfInputStream}</td>
    <td></td>
    <td></td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
    <td>&#9099;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>16+</td>
    <td>21+(&#8644;)</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #start start}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#8277;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
   <tr>
    <td>-</td>
    <td>-</td>
    <td>16+</td>
    <td>16+</td>
    <td>16+</td>
    <td>-</td>
    <td>-</td>
    <td class=fn>{@link #stop stop}</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
    <td>&#9679;</td>
   </tr>
  </tbody>
 </table>
*/
var MediaCodec = {

/** This indicates that the (encoded) buffer marked as such contains
 the data for a key frame.

 @deprecated Use {@link #BUFFER_FLAG_KEY_FRAME} instead.
*/
BUFFER_FLAG_SYNC_FRAME : "1",
/** This indicates that the (encoded) buffer marked as such contains
 the data for a key frame.
*/
BUFFER_FLAG_KEY_FRAME : "1",
/** This indicated that the buffer marked as such contains codec
 initialization / codec specific data instead of media data.
*/
BUFFER_FLAG_CODEC_CONFIG : "2",
/** This signals the end of stream, i.e. no buffers will be available
 after this, unless of course, {@link #flush} follows.
*/
BUFFER_FLAG_END_OF_STREAM : "4",
/** This indicates that the buffer only contains part of a frame,
 and the decoder should batch the data until a buffer without
 this flag appears before decoding the frame.
*/
BUFFER_FLAG_PARTIAL_FRAME : "8",
/** This indicates that the buffer contains non-media data for the
 muxer to process.

 All muxer data should start with a FOURCC header that determines the type of data.

 For example, when it contains Exif data sent to a MediaMuxer track of
 {@link android.media.MediaFormat#MIMETYPE_IMAGE_ANDROID_HEIC} type, the data must start with
 Exif header ("Exif\0\0"), followed by the TIFF header (See JEITA CP-3451C Section 4.5.2.)

 @hide
*/
BUFFER_FLAG_MUXER_DATA : "16",
/** If this codec is to be used as an encoder, pass this flag.
*/
CONFIGURE_FLAG_ENCODE : "1",
/***/
CRYPTO_MODE_UNENCRYPTED : "0",
/***/
CRYPTO_MODE_AES_CTR : "1",
/***/
CRYPTO_MODE_AES_CBC : "2",
/** If a non-negative timeout had been specified in the call
 to {@link #dequeueOutputBuffer}, indicates that the call timed out.
*/
INFO_TRY_AGAIN_LATER : "-1",
/** The output format has changed, subsequent data will follow the new
 format. {@link #getOutputFormat}() returns the new format.  Note, that
 you can also use the new {@link #getOutputFormat}(int) method to
 get the format for a specific output buffer.  This frees you from
 having to track output format changes.
*/
INFO_OUTPUT_FORMAT_CHANGED : "-2",
/** The output buffers have changed, the client must refer to the new
 set of output buffers returned by {@link #getOutputBuffers} from
 this point on.

 <p>Additionally, this event signals that the video scaling mode
 may have been reset to the default.</p>

 @deprecated This return value can be ignored as {@link #getOutputBuffers} has been deprecated.  Client should
 request a current buffer using on of the get-buffer or
 get-image methods each time one has been dequeued.
*/
INFO_OUTPUT_BUFFERS_CHANGED : "-3",
/** The content is scaled to the surface dimensions
*/
VIDEO_SCALING_MODE_SCALE_TO_FIT : "1",
/** The content is scaled, maintaining its aspect ratio, the whole
 surface area is used, content may be cropped.
 <p class=note>
 This mode is only suitable for content with 1:1 pixel aspect ratio as you cannot
 configure the pixel aspect ratio for a {@link Surface}.
 <p class=note>
 As of {@link android.os.Build.VERSION_CODES#N} release, this mode may not work if
 the video is {@linkplain android.media.MediaFormat#KEY_ROTATION rotated} by 90 or 270 degrees.
*/
VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING : "2",
/** Change a video encoder's target bitrate on the fly. The value is an
 Integer object containing the new bitrate in bps.

 @see #setParameters(Bundle)
*/
PARAMETER_KEY_VIDEO_BITRATE : "video-bitrate",
/** Temporarily suspend/resume encoding of input data. While suspended
 input data is effectively discarded instead of being fed into the
 encoder. This parameter really only makes sense to use with an encoder
 in "surface-input" mode, as the client code has no control over the
 input-side of the encoder in that case.
 The value is an Integer object containing the value 1 to suspend
 or the value 0 to resume.

 @see #setParameters(Bundle)
*/
PARAMETER_KEY_SUSPEND : "drop-input-frames",
/** When {@link #PARAMETER_KEY_SUSPEND} is present, the client can also
 optionally use this key to specify the timestamp (in micro-second)
 at which the suspend/resume operation takes effect.

 Note that the specified timestamp must be greater than or equal to the
 timestamp of any previously queued suspend/resume operations.

 The value is a long int, indicating the timestamp to suspend/resume.

 @see #setParameters(Bundle)
*/
PARAMETER_KEY_SUSPEND_TIME : "drop-start-time-us",
/** Specify an offset (in micro-second) to be added on top of the timestamps
 onward. A typical use case is to apply an adjust to the timestamps after
 a period of pause by the user.

 This parameter can only be used on an encoder in "surface-input" mode.

 The value is a long int, indicating the timestamp offset to be applied.

 @see #setParameters(Bundle)
*/
PARAMETER_KEY_OFFSET_TIME : "time-offset-us",
/** Request that the encoder produce a sync frame "soon".
 Provide an Integer with the value 0.

 @see #setParameters(Bundle)
*/
PARAMETER_KEY_REQUEST_SYNC_FRAME : "request-sync",
/** Set the HDR10+ metadata on the next queued input frame.

 Provide a byte array of data that's conforming to the
 user_data_registered_itu_t_t35() syntax of SEI message for ST 2094-40.
<p>
 For decoders:
<p>
 When a decoder is configured for one of the HDR10+ profiles that uses
 out-of-band metadata (such as {@link android.media.MediaCodecInfo.CodecProfileLevel#VP9Profile2HDR10Plus} or {@link android.media.MediaCodecInfo.CodecProfileLevel#VP9Profile3HDR10Plus}), this
 parameter sets the HDR10+ metadata on the next input buffer queued
 to the decoder. A decoder supporting these profiles must propagate
 the metadata to the format of the output buffer corresponding to this
 particular input buffer (under key {@link android.media.MediaFormat#KEY_HDR10_PLUS_INFO}).
 The metadata should be applied to that output buffer and the buffers
 following it (in display order), until the next output buffer (in
 display order) upon which an HDR10+ metadata is set.
<p>
 This parameter shouldn't be set if the decoder is not configured for
 an HDR10+ profile that uses out-of-band metadata. In particular,
 it shouldn't be set for HDR10+ profiles that uses in-band metadata
 where the metadata is embedded in the input buffers, for example
 {@link android.media.MediaCodecInfo.CodecProfileLevel#HEVCProfileMain10HDR10Plus}.
<p>
 For encoders:
<p>
 When an encoder is configured for one of the HDR10+ profiles and the
 operates in byte buffer input mode (instead of surface input mode),
 this parameter sets the HDR10+ metadata on the next input buffer queued
 to the encoder. For the HDR10+ profiles that uses out-of-band metadata
 (such as {@link android.media.MediaCodecInfo.CodecProfileLevel#VP9Profile2HDR10Plus},
 or {@link android.media.MediaCodecInfo.CodecProfileLevel#VP9Profile3HDR10Plus}),
 the metadata must be propagated to the format of the output buffer
 corresponding to this particular input buffer (under key {@link android.media.MediaFormat#KEY_HDR10_PLUS_INFO}). For the HDR10+ profiles that uses
 in-band metadata (such as {@link android.media.MediaCodecInfo.CodecProfileLevel#HEVCProfileMain10HDR10Plus}), the
 metadata info must be embedded in the corresponding output buffer itself.
<p>
 This parameter shouldn't be set if the encoder is not configured for
 an HDR10+ profile, or if it's operating in surface input mode.
<p>

 @see MediaFormat#KEY_HDR10_PLUS_INFO
*/
PARAMETER_KEY_HDR10_PLUS_INFO : "hdr10-plus-info",
/**Instantiate the preferred decoder supporting input data of the given mime type.

 The following is a partial list of defined mime types and their semantics:
 <ul>
 <li>"video/x-vnd.on2.vp8" - VP8 video (i.e. video in .webm)
 <li>"video/x-vnd.on2.vp9" - VP9 video (i.e. video in .webm)
 <li>"video/avc" - H.264/AVC video
 <li>"video/hevc" - H.265/HEVC video
 <li>"video/mp4v-es" - MPEG4 video
 <li>"video/3gpp" - H.263 video
 <li>"audio/3gpp" - AMR narrowband audio
 <li>"audio/amr-wb" - AMR wideband audio
 <li>"audio/mpeg" - MPEG1/2 audio layer III
 <li>"audio/mp4a-latm" - AAC audio (note, this is raw AAC packets, not packaged in LATM!)
 <li>"audio/vorbis" - vorbis audio
 <li>"audio/g711-alaw" - G.711 alaw audio
 <li>"audio/g711-mlaw" - G.711 ulaw audio
 </ul>

 <strong>Note:</strong> It is preferred to use {@link android.media.MediaCodecList#findDecoderForFormat}
 and {@link #createByCodecName} to ensure that the resulting codec can handle a
 given format.
@param {String} type The mime type of the input data.
@throws IOException if the codec cannot be created.
@throws IllegalArgumentException if type is not a valid mime type.
@throws NullPointerException if type is null.
*/
createDecoderByType : function(  ) {},

/**Instantiate the preferred encoder supporting output data of the given mime type.

 <strong>Note:</strong> It is preferred to use {@link android.media.MediaCodecList#findEncoderForFormat}
 and {@link #createByCodecName} to ensure that the resulting codec can handle a
 given format.
@param {String} type The desired mime type of the output data.
@throws IOException if the codec cannot be created.
@throws IllegalArgumentException if type is not a valid mime type.
@throws NullPointerException if type is null.
*/
createEncoderByType : function(  ) {},

/**If you know the exact name of the component you want to instantiate
 use this method to instantiate it. Use with caution.
 Likely to be used with information obtained from {@link android.media.MediaCodecList}
@param {String} name The name of the codec to be instantiated.
@throws IOException if the codec cannot be created.
@throws IllegalArgumentException if name is not valid.
@throws NullPointerException if name is null.
*/
createByCodecName : function(  ) {},

/**Returns the codec to its initial (Uninitialized) state.

 Call this if an {@link android.media.MediaCodec.CodecException#isRecoverable unrecoverable}
 error has occured to reset the codec to its initial state after creation.
@throws CodecException if an unrecoverable error has occured and the codec
 could not be reset.
@throws IllegalStateException if in the Released state.
*/
reset : function(  ) {},

/**Free up resources used by the codec instance.

 Make sure you call this when you're done to free up any opened
 component instance instead of relying on the garbage collector
 to do this for you at some point in the future.
*/
release : function(  ) {},

/**Configures a component.
@param {Object {MediaFormat}} format The format of the input data (decoder) or the desired
               format of the output data (encoder). Passing {@code null}
               as {@code format} is equivalent to passing an
               {@link MediaFormat#MediaFormat an empty mediaformat}.
@param {Object {Surface}} surface Specify a surface on which to render the output of this
                decoder. Pass {@code null} as {@code surface} if the
                codec does not generate raw video output (e.g. not a video
                decoder) and/or if you want to configure the codec for
                {@link ByteBuffer} output.
@param {Object {MediaCrypto}} crypto  Specify a crypto object to facilitate secure decryption
                of the media data. Pass {@code null} as {@code crypto} for
                non-secure codecs.
                Please note that {@link MediaCodec} does NOT take ownership
                of the {@link MediaCrypto} object; it is the application's
                responsibility to properly cleanup the {@link MediaCrypto} object
                when not in use.
@param {Number} flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
                component as an encoder.
@throws IllegalArgumentException if the surface has been released (or is invalid),
 or the format is unacceptable (e.g. missing a mandatory key),
 or the flags are not set properly
 (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
@throws IllegalStateException if not in the Uninitialized state.
@throws CryptoException upon DRM error.
@throws CodecException upon codec error.
*/
configure : function(  ) {},

/**Configure a component to be used with a descrambler.
@param {Object {MediaFormat}} format The format of the input data (decoder) or the desired
               format of the output data (encoder). Passing {@code null}
               as {@code format} is equivalent to passing an
               {@link MediaFormat#MediaFormat an empty mediaformat}.
@param {Object {Surface}} surface Specify a surface on which to render the output of this
                decoder. Pass {@code null} as {@code surface} if the
                codec does not generate raw video output (e.g. not a video
                decoder) and/or if you want to configure the codec for
                {@link ByteBuffer} output.
@param {Number} flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
                component as an encoder.
@param {Object {MediaDescrambler}} descrambler Specify a descrambler object to facilitate secure
                descrambling of the media data, or null for non-secure codecs.
@throws IllegalArgumentException if the surface has been released (or is invalid),
 or the format is unacceptable (e.g. missing a mandatory key),
 or the flags are not set properly
 (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
@throws IllegalStateException if not in the Uninitialized state.
@throws CryptoException upon DRM error.
@throws CodecException upon codec error.
*/
configure : function(  ) {},

/**Dynamically sets the output surface of a codec.
  <p>
  This can only be used if the codec was configured with an output surface.  The
  new output surface should have a compatible usage type to the original output surface.
  E.g. codecs may not support switching from a SurfaceTexture (GPU readable) output
  to ImageReader (software readable) output.
@param {Object {Surface}} surface the output surface to use. It must not be {@code null}.
@throws IllegalStateException if the codec does not support setting the output
            surface in the current state.
@throws IllegalArgumentException if the new surface is not of a suitable type for the codec.
*/
setOutputSurface : function(  ) {},

/**Create a persistent input surface that can be used with codecs that normally have an input
 surface, such as video encoders. A persistent input can be reused by subsequent
 {@link android.media.MediaCodec} or {@link android.media.MediaRecorder} instances, but can only be used by at
 most one codec or recorder instance concurrently.
 <p>
 The application is responsible for calling release() on the Surface when done.
@return {Object {android.view.Surface}} an input surface that can be used with {@link #setInputSurface}.
*/
createPersistentInputSurface : function(  ) {},

/**Configures the codec (e.g. encoder) to use a persistent input surface in place of input
 buffers.  This may only be called after {@link #configure} and before {@link #start}, in
 lieu of {@link #createInputSurface}.
@param {Object {Surface}} surface a persistent input surface created by {@link #createPersistentInputSurface}
@throws IllegalStateException if not in the Configured state or does not require an input
           surface.
@throws IllegalArgumentException if the surface was not created by
           {@link #createPersistentInputSurface}.
*/
setInputSurface : function(  ) {},

/**Requests a Surface to use as the input to an encoder, in place of input buffers.  This
 may only be called after {@link #configure} and before {@link #start}.
 <p>
 The application is responsible for calling release() on the Surface when
 done.
 <p>
 The Surface must be rendered with a hardware-accelerated API, such as OpenGL ES.
 {@link android.view.Surface#lockCanvas(android.graphics.Rect)} may fail or produce
 unexpected results.
@throws IllegalStateException if not in the Configured state.
*/
createInputSurface : function(  ) {},

/**After successfully configuring the component, call {@code start}.
 <p>
 Call {@code start} also if the codec is configured in asynchronous mode,
 and it has just been flushed, to resume requesting input buffers.
@throws IllegalStateException if not in the Configured state
         or just after {@link #flush} for a codec that is configured
         in asynchronous mode.
@throws MediaCodec.CodecException upon codec error. Note that some codec errors
 for start may be attributed to future method calls.
*/
start : function(  ) {},

/**Finish the decode/encode session, note that the codec instance
 remains active and ready to be {@link #start}ed again.
 To ensure that it is available to other client call {@link #release}
 and don't just rely on garbage collection to eventually do this for you.
@throws IllegalStateException if in the Released state.
*/
stop : function(  ) {},

/**Flush both input and output ports of the component.
 <p>
 Upon return, all indices previously returned in calls to {@link #dequeueInputBuffer
 dequeueInputBuffer} and {@link #dequeueOutputBuffer dequeueOutputBuffer} &mdash; or obtained
 via {@link android.media.MediaCodec.Callback#onInputBufferAvailable onInputBufferAvailable} or
 {@link android.media.MediaCodec.Callback#onOutputBufferAvailable onOutputBufferAvailable} callbacks &mdash; become
 invalid, and all buffers are owned by the codec.
 <p>
 If the codec is configured in asynchronous mode, call {@link #start}
 after {@code flush} has returned to resume codec operations. The codec
 will not request input buffers until this has happened.
 <strong>Note, however, that there may still be outstanding {@code onOutputBufferAvailable}
 callbacks that were not handled prior to calling {@code flush}.
 The indices returned via these callbacks also become invalid upon calling {@code flush} and
 should be discarded.</strong>
 <p>
 If the codec is configured in synchronous mode, codec will resume
 automatically if it is configured with an input surface.  Otherwise, it
 will resume when {@link #dequeueInputBuffer dequeueInputBuffer} is called.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
flush : function(  ) {},

/**After filling a range of the input buffer at the specified index
 submit it to the component. Once an input buffer is queued to
 the codec, it MUST NOT be used until it is later retrieved by
 {@link #getInputBuffer} in response to a {@link #dequeueInputBuffer}
 return value or a {@link android.media.MediaCodec.Callback#onInputBufferAvailable}
 callback.
 <p>
 Many decoders require the actual compressed data stream to be
 preceded by "codec specific data", i.e. setup data used to initialize
 the codec such as PPS/SPS in the case of AVC video or code tables
 in the case of vorbis audio.
 The class {@link android.media.MediaExtractor} provides codec
 specific data as part of
 the returned track format in entries named "csd-0", "csd-1" ...
 <p>
 These buffers can be submitted directly after {@link #start} or
 {@link #flush} by specifying the flag {@link #BUFFER_FLAG_CODEC_CONFIG}.  However, if you configure the
 codec with a {@link android.media.MediaFormat} containing these keys, they
 will be automatically submitted by MediaCodec directly after
 start.  Therefore, the use of {@link #BUFFER_FLAG_CODEC_CONFIG} flag is discouraged and is
 recommended only for advanced users.
 <p>
 To indicate that this is the final piece of input data (or rather that
 no more input data follows unless the decoder is subsequently flushed)
 specify the flag {@link #BUFFER_FLAG_END_OF_STREAM}.
 <p class=note>
 <strong>Note:</strong> Prior to {@link android.os.Build.VERSION_CODES#M},
 {@code presentationTimeUs} was not propagated to the frame timestamp of (rendered)
 Surface output buffers, and the resulting frame timestamp was undefined.
 Use {@link #releaseOutputBuffer(int, long)} to ensure a specific frame timestamp is set.
 Similarly, since frame timestamps can be used by the destination surface for rendering
 synchronization, <strong>care must be taken to normalize presentationTimeUs so as to not be
 mistaken for a system time. (See {@linkplain #releaseOutputBuffer(int, long)
 SurfaceView specifics}).</strong>
@param {Number} index The index of a client-owned input buffer previously returned
              in a call to {@link #dequeueInputBuffer}.
@param {Number} offset The byte offset into the input buffer at which the data starts.
@param {Number} size The number of bytes of valid input data.
@param {Number} presentationTimeUs The presentation timestamp in microseconds for this
                           buffer. This is normally the media time at which this
                           buffer should be presented (rendered). When using an output
                           surface, this will be propagated as the {@link
                           SurfaceTexture#getTimestamp timestamp} for the frame (after
                           conversion to nanoseconds).
@param {Number} flags A bitmask of flags
              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
              While not prohibited, most codecs do not use the
              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
@throws CryptoException if a crypto object has been specified in
         {@link #configure}
*/
queueInputBuffer : function(  ) {},

/**Similar to {@link #queueInputBuffer queueInputBuffer} but submits a buffer that is
 potentially encrypted.
 <strong>Check out further notes at {@link #queueInputBuffer queueInputBuffer}.</strong>
@param {Number} index The index of a client-owned input buffer previously returned
              in a call to {@link #dequeueInputBuffer}.
@param {Number} offset The byte offset into the input buffer at which the data starts.
@param {Object {MediaCodec.CryptoInfo}} info Metadata required to facilitate decryption, the object can be
             reused immediately after this call returns.
@param {Number} presentationTimeUs The presentation timestamp in microseconds for this
                           buffer. This is normally the media time at which this
                           buffer should be presented (rendered).
@param {Number} flags A bitmask of flags
              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
              While not prohibited, most codecs do not use the
              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
@throws CryptoException if an error occurs while attempting to decrypt the buffer.
              An error code associated with the exception helps identify the
              reason for the failure.
*/
queueSecureInputBuffer : function(  ) {},

/**Returns the index of an input buffer to be filled with valid data
 or -1 if no such buffer is currently available.
 This method will return immediately if timeoutUs == 0, wait indefinitely
 for the availability of an input buffer if timeoutUs &lt; 0 or wait up
 to "timeoutUs" microseconds if timeoutUs &gt; 0.
@param {Number} timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
@throws IllegalStateException if not in the Executing state,
         or codec is configured in asynchronous mode.
@throws MediaCodec.CodecException upon codec error.
*/
dequeueInputBuffer : function(  ) {},

/**Dequeue an output buffer, block at most "timeoutUs" microseconds.
 Returns the index of an output buffer that has been successfully
 decoded or one of the INFO_* constants.
@param {Object {MediaCodec.BufferInfo}} info Will be filled with buffer meta data.
@param {Number} timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
@throws IllegalStateException if not in the Executing state,
         or codec is configured in asynchronous mode.
@throws MediaCodec.CodecException upon codec error.
*/
dequeueOutputBuffer : function(  ) {},

/**If you are done with a buffer, use this call to return the buffer to the codec
 or to render it on the output surface. If you configured the codec with an
 output surface, setting {@code render} to {@code true} will first send the buffer
 to that output surface. The surface will release the buffer back to the codec once
 it is no longer used/displayed.

 Once an output buffer is released to the codec, it MUST NOT
 be used until it is later retrieved by {@link #getOutputBuffer} in response
 to a {@link #dequeueOutputBuffer} return value or a
 {@link android.media.MediaCodec.Callback#onOutputBufferAvailable} callback.
@param {Number} index The index of a client-owned output buffer previously returned
              from a call to {@link #dequeueOutputBuffer}.
@param {Boolean} render If a valid surface was specified when configuring the codec,
               passing true renders this output buffer to the surface.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
releaseOutputBuffer : function(  ) {},

/**If you are done with a buffer, use this call to update its surface timestamp
 and return it to the codec to render it on the output surface. If you
 have not specified an output surface when configuring this video codec,
 this call will simply return the buffer to the codec.<p>

 The timestamp may have special meaning depending on the destination surface.

 <table>
 <tr><th>SurfaceView specifics</th></tr>
 <tr><td>
 If you render your buffer on a {@link android.view.SurfaceView},
 you can use the timestamp to render the buffer at a specific time (at the
 VSYNC at or after the buffer timestamp).  For this to work, the timestamp
 needs to be <i>reasonably close</i> to the current {@link System#nanoTime}.
 Currently, this is set as within one (1) second. A few notes:

 <ul>
 <li>the buffer will not be returned to the codec until the timestamp
 has passed and the buffer is no longer used by the {@link android.view.Surface}.
 <li>buffers are processed sequentially, so you may block subsequent buffers to
 be displayed on the {@link android.view.Surface}.  This is important if you
 want to react to user action, e.g. stop the video or seek.
 <li>if multiple buffers are sent to the {@link android.view.Surface} to be
 rendered at the same VSYNC, the last one will be shown, and the other ones
 will be dropped.
 <li>if the timestamp is <em>not</em> "reasonably close" to the current system
 time, the {@link android.view.Surface} will ignore the timestamp, and
 display the buffer at the earliest feasible time.  In this mode it will not
 drop frames.
 <li>for best performance and quality, call this method when you are about
 two VSYNCs' time before the desired render time.  For 60Hz displays, this is
 about 33 msec.
 </ul>
 </td></tr>
 </table>

 Once an output buffer is released to the codec, it MUST NOT
 be used until it is later retrieved by {@link #getOutputBuffer} in response
 to a {@link #dequeueOutputBuffer} return value or a
 {@link android.media.MediaCodec.Callback#onOutputBufferAvailable} callback.
@param {Number} index The index of a client-owned output buffer previously returned
              from a call to {@link #dequeueOutputBuffer}.
@param {Number} renderTimestampNs The timestamp to associate with this buffer when
              it is sent to the Surface.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
releaseOutputBuffer : function(  ) {},

/**Signals end-of-stream on input.  Equivalent to submitting an empty buffer with
 {@link #BUFFER_FLAG_END_OF_STREAM} set.  This may only be used with
 encoders receiving input from a Surface created by {@link #createInputSurface}.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
signalEndOfInputStream : function(  ) {},

/**Call this after dequeueOutputBuffer signals a format change by returning
 {@link #INFO_OUTPUT_FORMAT_CHANGED}.
 You can also call this after {@link #configure} returns
 successfully to get the output format initially configured
 for the codec.  Do this to determine what optional
 configuration parameters were supported by the codec.
@throws IllegalStateException if not in the Executing or
                               Configured state.
@throws MediaCodec.CodecException upon codec error.
*/
getOutputFormat : function(  ) {},

/**Call this after {@link #configure} returns successfully to
 get the input format accepted by the codec. Do this to
 determine what optional configuration parameters were
 supported by the codec.
@throws IllegalStateException if not in the Executing or
                               Configured state.
@throws MediaCodec.CodecException upon codec error.
*/
getInputFormat : function(  ) {},

/**Returns the output format for a specific output buffer.
@param {Number} index The index of a client-owned input buffer previously
              returned from a call to {@link #dequeueInputBuffer}.
@return {Object {android.media.MediaFormat}} the format for the output buffer, or null if the index
 is not a dequeued output buffer.
*/
getOutputFormat : function(  ) {},

/**Retrieve the set of input buffers.  Call this after start()
 returns. After calling this method, any ByteBuffers
 previously returned by an earlier call to this method MUST no
 longer be used.
@deprecated Use the new {@link #getInputBuffer} method instead
 each time an input buffer is dequeued.

 <b>Note:</b> As of API 21, dequeued input buffers are
 automatically {@link java.nio.Buffer#clear cleared}.

 <em>Do not use this method if using an input surface.</em>
@throws IllegalStateException if not in the Executing state,
         or codec is configured in asynchronous mode.
@throws MediaCodec.CodecException upon codec error.
*/
getInputBuffers : function(  ) {},

/**Retrieve the set of output buffers.  Call this after start()
 returns and whenever dequeueOutputBuffer signals an output
 buffer change by returning {@link #INFO_OUTPUT_BUFFERS_CHANGED}. After calling this method, any
 ByteBuffers previously returned by an earlier call to this
 method MUST no longer be used.
@deprecated Use the new {@link #getOutputBuffer} method instead
 each time an output buffer is dequeued.  This method is not
 supported if codec is configured in asynchronous mode.

 <b>Note:</b> As of API 21, the position and limit of output
 buffers that are dequeued will be set to the valid data
 range.

 <em>Do not use this method if using an output surface.</em>
@throws IllegalStateException if not in the Executing state,
         or codec is configured in asynchronous mode.
@throws MediaCodec.CodecException upon codec error.
*/
getOutputBuffers : function(  ) {},

/**Returns a {@link java.nio.Buffer#clear cleared}, writable ByteBuffer
 object for a dequeued input buffer index to contain the input data.

 After calling this method any ByteBuffer or Image object
 previously returned for the same input index MUST no longer
 be used.
@param {Number} index The index of a client-owned input buffer previously
              returned from a call to {@link #dequeueInputBuffer},
              or received via an onInputBufferAvailable callback.
@return {Object {java.nio.ByteBuffer}} the input buffer, or null if the index is not a dequeued
 input buffer, or if the codec is configured for surface input.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
getInputBuffer : function(  ) {},

/**Returns a writable Image object for a dequeued input buffer
 index to contain the raw input video frame.

 After calling this method any ByteBuffer or Image object
 previously returned for the same input index MUST no longer
 be used.
@param {Number} index The index of a client-owned input buffer previously
              returned from a call to {@link #dequeueInputBuffer},
              or received via an onInputBufferAvailable callback.
@return {Object {android.media.Image}} the input image, or null if the index is not a
 dequeued input buffer, or not a ByteBuffer that contains a
 raw image.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
getInputImage : function(  ) {},

/**Returns a read-only ByteBuffer for a dequeued output buffer
 index. The position and limit of the returned buffer are set
 to the valid output data.

 After calling this method, any ByteBuffer or Image object
 previously returned for the same output index MUST no longer
 be used.
@param {Number} index The index of a client-owned output buffer previously
              returned from a call to {@link #dequeueOutputBuffer},
              or received via an onOutputBufferAvailable callback.
@return {Object {java.nio.ByteBuffer}} the output buffer, or null if the index is not a dequeued
 output buffer, or the codec is configured with an output surface.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
getOutputBuffer : function(  ) {},

/**Returns a read-only Image object for a dequeued output buffer
 index that contains the raw video frame.

 After calling this method, any ByteBuffer or Image object previously
 returned for the same output index MUST no longer be used.
@param {Number} index The index of a client-owned output buffer previously
              returned from a call to {@link #dequeueOutputBuffer},
              or received via an onOutputBufferAvailable callback.
@return {Object {android.media.Image}} the output image, or null if the index is not a
 dequeued output buffer, not a raw video frame, or if the codec
 was configured with an output surface.
@throws IllegalStateException if not in the Executing state.
@throws MediaCodec.CodecException upon codec error.
*/
getOutputImage : function(  ) {},

/**If a surface has been specified in a previous call to {@link #configure}
 specifies the scaling mode to use. The default is "scale to fit".
 <p class=note>
 The scaling mode may be reset to the <strong>default</strong> each time an
 {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is received from the codec; therefore, the client
 must call this method after every buffer change event (and before the first output buffer is
 released for rendering) to ensure consistent scaling mode.
 <p class=note>
 Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, this can also be done
 after each {@link #INFO_OUTPUT_FORMAT_CHANGED} event.
@throws IllegalArgumentException if mode is not recognized.
@throws IllegalStateException if in the Released state.
*/
setVideoScalingMode : function(  ) {},

/**Sets the audio presentation.
@param {Object {AudioPresentation}} presentation see {@link AudioPresentation}. In particular, id should be set.
*/
setAudioPresentation : function(  ) {},

/**Retrieve the codec name.

 If the codec was created by createDecoderByType or createEncoderByType, what component is
 chosen is not known beforehand. This method returns the name of the codec that was
 selected by the platform.

 <strong>Note:</strong> Implementations may provide multiple aliases (codec
 names) for the same underlying codec, any of which can be used to instantiate the same
 underlying codec in {@link android.media.MediaCodec#createByCodecName}. This method returns the
 name used to create the codec in this case.
@throws IllegalStateException if in the Released state.
*/
getName : function(  ) {},

/**Retrieve the underlying codec name.

 This method is similar to {@link #getName}, except that it returns the underlying component
 name even if an alias was used to create this MediaCodec object by name,
@throws IllegalStateException if in the Released state.
*/
getCanonicalName : function(  ) {},

/**Return Metrics data about the current codec instance.
@return {Object {android.os.PersistableBundle}} a {@link PersistableBundle} containing the set of attributes and values
 available for the media being handled by this instance of MediaCodec
 The attributes are descibed in {@link MetricsConstants}.

 Additional vendor-specific fields may also be present in
 the return value.
*/
getMetrics : function(  ) {},

/**Communicate additional parameter changes to the component instance.
 <b>Note:</b> Some of these parameter changes may silently fail to apply.
@param {Object {Bundle}} params The bundle of parameters to set.
@throws IllegalStateException if in the Released state.
*/
setParameters : function(  ) {},

/**Sets an asynchronous callback for actionable MediaCodec events.

 If the client intends to use the component in asynchronous mode,
 a valid callback should be provided before {@link #configure} is called.

 When asynchronous callback is enabled, the client should not call
 {@link #getInputBuffers}, {@link #getOutputBuffers},
 {@link #dequeueInputBuffer}(long) or {@link #dequeueOutputBuffer(BufferInfo, long)}.
 <p>
 Also, {@link #flush} behaves differently in asynchronous mode.  After calling
 {@code flush}, you must call {@link #start} to "resume" receiving input buffers,
 even if an input surface was created.
@param {Object {MediaCodec.Callback}} cb The callback that will run.  Use {@code null} to clear a previously
           set callback (before {@link #configure configure} is called and run
           in synchronous mode).
@param {Object {Handler}} handler Callbacks will happen on the handler's thread. If {@code null},
           callbacks are done on the default thread (the caller's thread or the
           main thread.)
*/
setCallback : function(  ) {},

/**Sets an asynchronous callback for actionable MediaCodec events on the default
 looper.
 <p>
 Same as {@link #setCallback(Callback, Handler)} with handler set to null.
@param {Object {MediaCodec.Callback}} cb The callback that will run.  Use {@code null} to clear a previously
           set callback (before {@link #configure configure} is called and run
           in synchronous mode).
@see #setCallback(Callback, Handler)
*/
setCallback : function(  ) {},

/**Registers a callback to be invoked when an output frame is rendered on the output surface.
 <p>
 This method can be called in any codec state, but will only have an effect in the
 Executing state for codecs that render buffers to the output surface.
 <p>
 <strong>Note:</strong> This callback is for informational purposes only: to get precise
 render timing samples, and can be significantly delayed and batched. Some frames may have
 been rendered even if there was no callback generated.
@param {Object {MediaCodec.OnFrameRenderedListener}} listener the callback that will be run
@param {Object {Handler}} handler the callback will be run on the handler's thread. If {@code null},
           the callback will be run on the default thread, which is the looper
           from which the codec was created, or a new thread if there was none.
*/
setOnFrameRenderedListener : function(  ) {},

/**Get the codec info. If the codec was created by createDecoderByType
 or createEncoderByType, what component is chosen is not known beforehand,
 and thus the caller does not have the MediaCodecInfo.
@throws IllegalStateException if in the Released state.
*/
getCodecInfo : function(  ) {},


};